Lecture 13 on Oct. 28 2013

Today, we study the integration of an analytic function on closed curves. In what follows, R is a rectangle
with length a and width b. Without loss of generality, we assume a > b. We use A to denote a disk. The
first theorem is

Theorem 0.1. If f is an analytic function in R, then

f(z)dz =0,
OR

where OR is the boundary contour of R.
We can also weaken the assumption in Theorem 0.1 to get

Theorem 0.2. If f is analytic on R\ {z1, ..., zn} and moreover

lim (z — z;) f(z) =0, forallj=1,..,n, (0.1)
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then it holds

/aRf(z)dzzo.

We sketch the proof of Theorems 0.1-0.2 in the following. Reads should refer to the book of Ahlfors for
more detailed arguments.

Proof of Theorem 0.1. Inductively if we have R,, a sub-rectangle of R, then we can bisect it into four identical
rectangles, denoted by R, 1, Ry 2, Ry 3, Ry 4, respectively. Clearly we have
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Using triangle inequality, for some i = 1,2, 3,4, it must hold

/BRM f(z)dz

Now we denote by R,41 the R, ;. Setting R; = R, we get a sequence of decreasing rectangles, say {R,},
such that

>

f(z)dz

OR,

1
4

>

f(z)dz

OR,,

, for all m > 1. (0.2)
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/aRn+1 f(z)dz

The above construction has four straightforward consequences. 1. R,, — z* for some z* in R; 2. z* must
be in R, for all n; 3. for any z in R,,, the distance between z and z* is bounded by the length of diagonal
of R,. More precisely

— 2" <1 h of di 1 of =4/—+ — .
|z — 2| < length of diagonal of R, D + < on T (0.3)
4. the length of OR,, is bounded by
b
length of OR, = —— + <= (0.4)
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Since f is analytic at z*, we have

lim M,f’(z*) —0.
z—>z* z — z*



Therefore for any € > 0, we can find a d(¢) > 0 suitably small so that
lf(z) = f(z*) = f'(z%)(z — 2%)| < €|z — 2¥|, for all z with |z — 2| < d(e).

Noticing that R,, is shrinking to the point z*, when n is large enough, any point w in R,, satisfies the
condition |w — z*| < d(e). Therefore we know that for n large enough,

If(z) = f(z") = f'(z")(z = 2")| < €|z — 2%, for all z in R,,.

Using this estimate, we know that

= F(2) = (&) = (") (z = 2%) dz

OR,

f(z)dz

<e/ |z — 2" |dz].
OR,
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Applying (0.3)-(0.4) to the right-hand side above, it follows that
2

an €.

/aRf(z)dz .

< 8a’e.

(2)dz| <
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By (0.2), one can easily show that

1
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f(z)dz

OR,

Therefore the above two estimates show that

f(z)dz

OR

Since € is arbitrary, the proof is done. O
the proof of Theorem 0.2 is shown as follows.

Proof of Theorem 0.2. Without loss of generality, we assume f is analytic on R\ {29}. Letting R,, be a
square centered at zop with dimension 1/2"™. Clearly by Theorem 0.1, we have

(z)dz = f(z) dz. (0.5)
OR OR,,

By the assumption in Theorem 0.2, we have
|z — 20| |[f(2)] <, provided that |z — 2| < d(€).
therefore when n is large enough, it follows
|z — 20| | f(2)] <, for all z in R,.

Applying the above estimate to (0.5), one can easily get

§e/ |z — 20| 7}|dz]|.
OR

n

(z)dz

f(z)dz

ORn

OR

Since 2 is on OR,,, |z — 29| > 1/2""1. So the following estimate holds

_ 1
/aR |z — 20| 7Hdz| < 2"“72”_2 = 8.

Using the above two estimate, we get

< 8e.

(z)dz
OR

The proof is finished since € is arbitrary. O



With Theorems 0.1-0.2, the following two results are trivial.

Theorem 0.3. If f is analytic in A, then for all v a closed curve in §2, we have

[Yf(z) dz =0.

Proof. Fixing zo in A, for any z in A, we can connect zg and z by vertical and horizontal segments. Define

F) = [ fw)du,

where I' connects zp and z. Meanwhile I' is formed by vertical and horizontal segments. Using Theorem
0.1, F(z) is independent of the choice of vertical and horizontal segments. Moreover, we also know that F
is analytic and satisfies f(z) = F’(z). Using the conclusion from Lecture 14, the proof is done. O

Same arguments can also be applied to show that

Theorem 0.4. If f is analytic in A" = A\ {z1,...,2,} and

lim (z — z;) f(2) =0, JJorallj=1,...n,
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then we have

/ f(z)dz =0, for all v a closed curve in A'.
v

One should notice that the v in Theorem 0.4 can not pass the points in {z1,...,2,}. Theorem 0.4
can be used to show the famous Cauchy integral formula. In fact, if f is analytic in A, then F(z) =
(f(2) = f(20))/(2 — z0) satisfies all assumptions in Theorem 0.4. Here zy is a point in A. Therefore if we
have v a closed curve in A, then
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provided that z is not on . Rewrite the above equality, we get

f(zo)/ ! dz = /(2) dz. (0.6)
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In what follows, we try to understand the integral on the left-hand side of (0.6). Supposing that z(t) is a
parametrization of 7. ¢ is running within the interval [a, 8]. Clearly we have z(a) = z(8) since v is a closed
curve. Letting

t /
h(t) = / & ds, for all ¢ € [a, ],

z(s) — zo

by fundamental theorem of calculus, one has

Defining
H(t) = e "M (2(t) - 20),
then by product rule and chain rule, we have

H'(t) = e MO (2 (t) — B (t)(2(t) — z)) = 0.



Thereofore H(t) is a constant. it shows that
H(B) = e "D (2(8) = 20) = H(a) = za — z0.

Furthermore, we have e(®) = 1. that is h(B8) = 2kmi, where k is some integer. h(f) is the integral on the
left-hand side of (0.6). Hence we know from (0.6) that

f(z0) ! (2) dz.
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One should notice that the integer k depends only on zy and the choice of closed curve 7. So in the following,
we define this k£ to be the index of zy with respect to =.

Definition 0.5. Given zg and a closed curve 7, here zy is not on y then we define

1 1
n(v, zo) —/ dz.
v
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n(v, z0) is called the index of zo with respect to .



